

Available online at www.sciencedirect.com

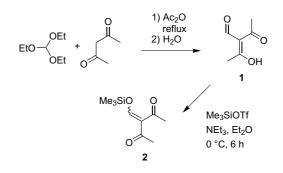
Tetrahedron Letters 45 (2004) 9177-9179

Tetrahedron Letters

Synthesis of functionalized acetophenones by [3 + 3] cyclizations of 1,3-bis-silyl enol ethers with 2-acetyl-3-silyloxyalk-2-en-1-ones

Rüdiger Dede and Peter Langer*

Institut für Chemie und Biochemie der Ernst-Moritz-Arndt Universität Greifswald, Soldmannstr. 16, D-17487 Greifswald, Germany

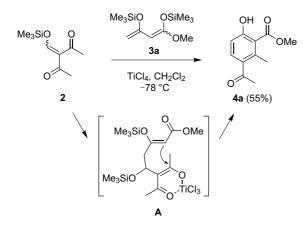

Received 6 October 2004; revised 18 October 2004; accepted 19 October 2004

Abstract—The TiCl₄ mediated cyclization of 1,3-bis-silyl enol ethers with 2-acetyl-1-silyloxybut-1-en-3-one and 3-acetyl-4-silyloxypent-3-en-2-one, readily prepared from 3-formyl(acetylacetone) and triacetylmethane, afforded a variety of functionalized acetophenones.

© 2004 Published by Elsevier Ltd.

Functionalized acetophenones are of considerable interest as synthetic building blocks and occur in a number of natural product analogues.¹ Some years ago, Chan and co-workers reported an elegant synthesis of salicylates by [3 + 3] cyclization of 1,3-bis-silyl enol ethers electrneutral 1,3-dicarbonyl dianion equivalents^{2,3} with 1,1,3,3-tetramethoxypropane or 3-silyloxyalk-2en-1-ones.⁴ Herein, we wish to report the application of this methodology to the synthesis of functionalized acetophenones by [3 + 3] cyclizations of 1,3-bis-silyl enol ethers with 2-acetyl-3-silyloxyalk-2-en-1-ones.

3-Formylacetylacetone (1) was prepared according to a literature procedure by reaction of acetylacetone with triethyl orthoformate and acetic anhydride.⁵ It was assumed for a long time that 1 exists as 3-(hydroxymethylidene)acetylacetone.^{5,6} However, it was later shown that 1 mainly resides as 3-formyl-2-hydroxypent-2-en-4one.^{7,8} Reactions of 1 have only scarcely been reported in the literature.^{5,8} Our first experiments related to the silylation of 1 were unsuccessful as the reaction of 1 with Me₃SiCl/NEt₃ resulted in the formation of a complex mixture. In contrast, treatment of an ether solution of 1 with Me₃SiOTf/NEt₃⁹ afforded the 2-acetyl-1-silyloxybut-1-en-3-one 2 in 85% yield (Scheme 1). The synthesis of 2 has, to the best of our knowledge, not yet been re-


Scheme 1. Synthesis and silulation of 1.

ported and proceeded by regioselective silulation of the formyl rather than the acetyl group.

The TiCl₄ mediated [3 + 3] cyclization of 3-(silyloxymethylidene)acetylacetone (2) with 1,3-bis-silyl enol ether **3a**, readily available from methyl acetoacetate, afforded the functionalized acetophenone **4a** in reasonable yield (Scheme 2).¹⁰ The regioselective formation of the product can be explained based on general observations reported by Chan:^{3,4} conjugate addition of the terminal carbon atom of **3a** onto **2** gave intermediate **A** and subsequent cyclization and aromatization afforded the final product. The regioselective conjugate addition can be explained by coordination of the 1,3-diketo moiety of **2** with TiCl₄, which enhances the electrophilicity of the carbon atom attached to the silyloxy group.⁴ Transmetallation and formation of a titanium enolate cannot be excluded.

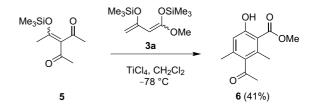
Keywords: Acetophenones; Cyclizations; Regioselectivity; Silyl enol ethers.

^{*}Corresponding author. Tel./fax: +49 3834 864461; e-mail: peter.langer@uni-greifswald.de

Scheme 2. Synthesis of salicylate 4a.

The preparative scope was studied by systematic variation of the substituents of the 1,3-bis-silyl enol ether (Scheme 3, Table 1). The cyclization of **2** with **3b** and **3c**, derived from ethyl and benzyl acetoacetate, afforded the acetophenones **4b** and **4c** (Scheme 2). The cyclization of **2** with 2,4-bis(trimethylsilyloxy)-1,3-pentadiene (**3d**) afforded **4d**. Starting with 1,3-bis-silyl enol ethers **3e–h**, containing a substituent at the terminal carbon atom, afforded the methyl-, ethyl-, butyl- and allyl-substituted acetophenones **4e–h**, respectively. The cyclization of **2** with **3i–j** afforded the methoxy- and ethoxy-substituted acetophenones **4i–j**, respectively.

The cyclization of 1,3-bis-silyl enol ether 3a with known¹¹ 3-acetyl-4-silyloxypent-3-en-2-one (5), prepared by treatment of triacetylmethane with Me₃SiOTf, afforded the functionalized acetophenone 6 (Scheme 4).



Scheme 3. Synthesis of salicylates 4a–j.

Table 1. Products and yields

4	\mathbb{R}^1	\mathbb{R}^2	% ^a
a	Н	OMe	55
b	Н	OEt	40
с	Н	OBn	33
d	Н	Me	35
e	Me	OMe	72
f	Et	OEt	60
g	Bu	OMe	77
ĥ	Allyl	OEt	74
i	OMe	OMe	35
j	OEt	OEt	30

^a Yields of isolated products.

Scheme 4. Synthesis of salicylate 6.

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References and notes

- 1. Römpp Lexikon Naturstoffe; Fugmann, B., Lane-Fugmann, S., Steglich, W., Eds.; Thieme: Stuttgart, 1997.
- (a) Chan, T.-H.; Brownbridge, P. J. Chem. Soc., Chem. Commun. 1979, 578; (b) Molander, G. A.; Cameron, K. O. J. Am. Chem. Soc. 1993, 115, 830.
- 3. For a review of 1,3-bis-silyl enol ethers, see: Langer, P. *Synthesis* **2002**, 441.
- (a) Chan, T.-H.; Brownbridge, P. J. Am. Chem. Soc. 1980, 102, 3534; (b) Brownbridge, P.; Chan, T.-H.; Brook, M. A.; Kang, G. J. Can. J. Chem. 1983, 61, 688; (c) Kang, G. J.; Chan, T. H. J. Org. Chem. 1985, 50, 452; for reactions of 1,3,5-tris-silyl enol ethers, see: (d) Chan, T. H.; Stössel, D. J. Org. Chem. 1986, 51, 2423; (e) Chan, T. H.; Stössel, D. J. Org. Chem. 1988, 53, 4901.
- Sankar, P. J.; Das, S. K.; Giri, V. S. *Heterocycles* 1991, 32, 1109.
- (a) Claisen, L. Justus Liebigs Ann. Chem. 1897, 297, 57; (b) Claisen, L. Chem. Ber. 1893, 26, 2731.
- Guseinov, F. I. Russ. Chem. Bl. 1999, 48, 743; Izv. Akad. Nauk Ser. Khim. 1999, 747.
- Emelina, E. E.; Ershov, B. A.; Zelenin, A. K.; Selivanov, S. I. *Russ. J. Org. Chem.* **1994**, *30*, 1630; *Zh. Org. Khim.* **1994**, *30*, 1548.
- 9. Krägeloh, K.; Simchen, G. Synthesis 1981, 30.
- 10. General procedure for the preparation of salicylates 4: To a stirred CH₂Cl₂ solution (4.5 mL) of 3-(silyloxymethylidene)acetylacetone (2) (206 mg, 1.03 mmol) was added TiCl₄ (0.13 mL, 1.18 mmol) at -78 °C under argon atmosphere in the presence of molecular sieves (4Å) (0.4g). Then 1,3bis(trimethylsiloxy)-1-methoxy-1,3-pentadiene 3e (418 mg, 1.52 mmol) was added. The temperature of the reaction mixture was allowed to rise to 20°C during 20h and was stirred for another 4h. After addition of CH₂Cl₂ (50mL) and removal of the molecular sieves, a saturated aqueous solution of NaHCO₃ (20mL) was poured into the reaction mixture. The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (3×100 mL). Subsequently, an aqueous solution of HCl (10%, 10mL) was added to the aqueous layer, which again was extracted with CH_2Cl_2 (3 × 75 mL). The combined organic extracts were dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel; hexane/ethyl acetate = 10:1) to give 4e (164mg, 72%) as colourless crystals; $R_{\rm f} = 0.51$ (hexane/ethyl acetate = 3:1); IR (KBr, cm⁻¹): $\tilde{v} = 3222$, (s, br), 3015 (m), 3001 (m), 2951 (m), 1733 (s), 1646 (s), 1560 (s), 1480 (m), 1439 (s), 1382 (m), 1362 (s), 1303 (s), 1244 (s), 1210 (s), 1149 (s), 1065 (m); ¹H NMR (CDCl₃, 300 MHz): $\delta = 11.31$ (s, 1H, OH), 7.47 (s, 1H, ArH), 3.98

(s, 3H, OCH₃), 2.57 (s, 3H, CH₃), 2.53 (s, 3H, CH₃), 2.25 (s, 3H, CH₃); 13 C NMR (CDCl₃, 50 MHz): δ = 201.85, 172.09, 161.70, 138.37, 134.64, 132.33, 123.77, 113.85, 52.36, 30.38, 19.76, 15.71; MS (EI, 70eV): m/z (%) = 223.0

([M + 1]⁺, 6), 222.0 (M⁺, 49), 191.0 (23), 190.0 (84), 175.0 (100), 161.9 (24), 91 (23); Anal. Calcd for $C_{12}H_{14}O_4$: C 64.85, H 6.35; found: C 64.94, H 6.28. 11. Shanan-Atidi, H.; Shvo, Y. *Tetrahedron Lett.* **1971**, 603.